
1

Building a Scalable Infrastructure

Terence Cr itchlow

cr itchlow@llnl.gov
Center for Applied Scientific Computing
Lawrence L ivermore National Laboratory

UC Davis

Aug. 17, 2000

UCRL-VG-140032

My background:

● 6 years exper ience in bioinformatics
● Ph.D. in Computer Science from Univ. of Utah

✵ Worked on data transformation with the Utah Center
for Human Genome Research

● LLNL
✵ Working on the data integration with the Biology and

Biotechnology program

Focus on applying computer science research to
bioinformatics.

2

Goals for the class:

Outline the effects of design decisions on
application scalability.

Stimulate discussion about what constitutes a good
bioinformatics design.

Identify some of the tools, techniques, and resources
available.

Outline

● Define scalability
● General approaches

● Hardware scalability issues
● Software scalability issues
● Data exchange

● Wrap-up

Discussion

Discussion &
Hands-on

3

General format of class

● Lecture component

● General discussions

● Hands-on

A lack of questions will lead to a much less
interesting class.

Ask questions!

We will spend time on those areas of most interest to you.

What is a bioinformatics system, architecture
or infrastructure?

● PC / Mac

● Network

● Robotics

● Servers

The collection of hardware and software used to
support genomics research.

● User inter faces

● LIMS

● Databases

● Analysis programs

4

What is Scalability?

What does it mean for a system to be scalable?

● Merr iam-Webster:
✵ “ Capable of being scaled” -up where scaled-up is
✵ An increase according to a fixed ratio

● A better working definition:
✵ A system capable of growing to meet future demands

● A practical definition:
✵ A system in which fixing bottlenecks is easy

Scalable systems are not per fect - just fixable.

5

Why do we need scalable systems?

● We are unable to accurately forecast where the
system will not meet demand.

✵ Technology pushes applications in directions that were
thought impossible just a year or two ago.

● Biology changes too fast for us to keep up using
traditional approaches.

“ Biology evolves faster than computer science or
technology, which is a scary truth indeed.”

Tom Slezak

Contr ibuting factors:

● Users always want increased functionality. Now.
✵ Deadlines can limit solutions.
✵ As unplanned functionality is added, system complexity

grows.

● Terminology is not consistent.
✵ CS people and biologists/geneticists have trouble

communicating needs.
✵ Biologists from different fields use the same words in

different ways.
✵ New technology spawns new terminology.

6

Why is this an issue?

● Prototype systems are often thrust into use without
being “ hardened” .

● Simplifying assumptions in the prototype limit the
ability to handle real work-loads.

● Non-scalable systems become bottlenecks for the
entire architecture.

Discussion:

What assumptions would you make
designing an application for a single

user to run on their desktop?

7

Some common assumptions:

● Hardware probably a Mac or PC.
● Only one instance of the application running.
● Application and inter face on the same computer .
● Certain software is available.
● Consistent use of terminology.
● Data is stored locally.
● Full control over available resources.

✵ Memory, disk space, ….

How do those assumptions limit scalability:

● What would need to change if:
✵ Your entire lab wanted to use it?
✵ The entire company/university wanted to use it?
✵ I t was to be distr ibuted to collaborators outside of your

institution?
✵ I t was released over the Internet?

This is not an atypical progression for
bioinformatics software.

8

General Approaches to Scalability

Components of a bioinformatics
infrastructure:

Hardware
● Network

● Specialty components
✵ Robotics
✵ Custom chips

● Computer
✵ CPU
✵ Memory
✵ Disk
✵ Operating system

Software
● User

● Applications
✵ Analysis programs
✵ Inter face programs

● Data
✵ Entry
✵ Storage format
✵ Access

9

How do you design a scalable system?

● Upgrade Memory.
● Add new disks.
● Switch hardware platforms.
● Upgrade software.
● Add new applications / inter faces.
● Switch database vendors.

Build a system that allows existing hardware and
software components to be replaced, or new ones

added, without affecting other components.

What does this mean in practice?

● Modular design.
✵ Limits the scope of an assumption
✵ Allows components to be combined as needed

● Use of general purpose programming languages.
✵ Provides hardware transparency
✵ Do not use system specific features

● Use the r ight level of abstraction
✵ Too detailed will make software too complex
✵ Too abstract will not be able to solve the problem

10

What does this mean in practice? (cont)

● Question assumptions as you make decisions.
✵ What will have to change if you are to move beyond the

limits of that assumption.

● Paramater ize programs
✵ Pass in constants instead of hard-coding them

● Make extensive use of meta-data
✵ Data is easier to change than code
✵ Gener ic code can be re-used in several places

Why take a modular approach?

Flexibility is the key to achieving scalability.

To meet tight deadlines, you will need to
combine existing components in ways you

never expected, while working around
constraints you were told could not happen but

somehow have.

11

How do you remove bottlenecks?

● Identify problem component.
✵ Profiling

● Correct problem
✵ upgrade / rewr ite component
✵ redesign component architecture
✵ redesign system architecture

● Repeat

Correcting one bottleneck only allows you to identify the next.

Hardware Scalability

12

There are two major hardware components in
a bioinformatics infrastructure.

● Network
✵ Apple talk / Novell / Ethernet / ….
✵ Bus / token r ing / star / ….

● Computer / Operating systems
✵ Mac / PC / workstation / server
✵ MacOS / Windows / NT / UNIX / linux

● Special purpose hardware
✵ Blast accelerators (Time logic, Compugen)
✵ Super-computers
✵ Robotics

Discussion:

What computer and operating
system choices would you make?

13

Network recommendations:

● Ethernet (tcp/ip)
✵ Allows connection to rest of the wor ld
✵ Common standard, so advances in technology will

benefit you
✵ Star or bus configuration (r ing too slow)

● No restr ictions on architecture
● Multiple vendors
● Easy to add machines (sub-nets)
● Fast and getting faster (1Gb Ethernet coming)

Server recommendations:

● Sun/HP/SGI server running UNIX
✵ Multi-processor machine (if possible)
✵ As much cache as possible
✵ 1 GB main memory min
✵ 100GB disk space min

● Double minimum requirements if
server both web and application server

● All components easily extended
● Multiprocessor allows large granular ity parallelism
● UNIX designed for multithreaded, multi-user env.

Emphasize
these over
processor

speed.

14

Desktop recommendations:

● IBM compatible running NT
✵ 128 MB ram min
✵ 9 GB disk min

● More software available
● More robust than typical windows
● Easier to upgrade components than Mac

The most important thing is to have a consistent
environment if at all possible.

Hands-On Exercise:

A Br ief Intro to Unix

15

UNIX uses a combined window / command-
line inter face.

● Common commands
✵ cd /home/cr itchlow - change directory
✵ ls - list the contents of the directory
✵ pwd - what is the present working directory
✵ rm file.dat - remove (delete) file.dat
✵ mkdir / rmdir foo - make / remove directory (folder) foo
✵ man ls - list the manual (help) page for command ls
✵ more file.dat - list file.dat to the current window

✵ ps - shows all your running processes
✵ kill 123 - stops process 123

Programs are executed from the command
line prompt.

● Common tools
✵ compress file.dat - compacts file.dat to conserve space
✵ uncompress file.dat.Z - uncompresses file.dat.Z
✵ tar -Bcf file.tar dir - creates file.tar (contains files in dir)
✵ tar -Bxf file.tar - extracts all files from file.tar

✵ per l - the per l interpreter
✵ gcc - the gnu C/C++ compiler
✵ emacs - file editor
✵ ftp - file transfer program

http://wks.uts.ohio-state.edu/unix_course/intro-1.html

16

UNIX allows multiple programs to run
concur rently (multitasking).

● By default commands run in the “ foreground”
✵ At most one program per window
✵ Multiple windows may be open at the same time

● Placing “ & ” after a command runs it in the
background

✵ Allows other commands to be executed from the same
window while it runs.

✵ Processing continues even if window is closed.

● C-c stops a program
● C-z suspends a program

✵ fg - br ing process into foreground (resume)

UNIX uses common file extensions to imply
file type (like windows).

● .Z - compressed (zipped) file
● .gz - gnu compressed (zipped) file
● .tar - tarred file
● .pl - per l file
● .c - C file
● .C or .cc - C++ file

17

Emacs is a power ful text editor .

● Basic commands:
✵ C-x C-f - open a file
✵ C-x C-s- save a file
✵ C-x C-c- close editor
✵ C-s - search for word
✵ C-d - delete character at cursor
✵ C-v - move forward one screen
✵ M-v - move backwards one screen

● Available for multiple platforms
✵ Almost all UNIX flavors, windows

www.gnu.org

Discussion:

Questions about hardware issues?

18

Section:

Software Scalability

There are three major considerations in a
bioinformatics software infrastructure?

● Data management
✵ Human / program / external data sources
✵ Flat-files / Excel / Word
✵ Relational / object-relational / object-or iented database

● Applications
✵ Data processing
✵ User inter faces

● User

19

Discussion:

Where does your data come from and
where does it go?

Use a relational database to dr ive your
applications!

● Sybase
● Oracle

● Databases provide:
✵ Consistency
✵ Query capabilities
✵ Flexibility

● Informix
● DB2

✵ Reliability
✵ Parallel processing
✵ Scalability

Note: Excel, Word, MySQL, and flat-files are
NOT on the list.

Do not confuse the database with the user inter face.

20

Using a database effectively requires
exper ience.

● Database configuration
✵ The number / size / location of par titions determines

how much data you can have and how effectively it can
be accessed

● Schema
✵ Data layout determines how complicated quer ies are

● Indices
✵ Proper indices ensure fast data retr ieval.

http://www.compapp.dcu.ie/databases/welcome.html

Developing scalable software

21

Scalable application development requires
programming for flexibility.

● Programming language

● User inter face

● Component granular ity

Every decision made dur ing development affects
scalability.

These decisions are closely related.

● Data flow

● Application architecture

● Buy vs. freeware vs. build

To select a programming language consider :

● How fast the application needs to run.
✵ Compiled languages (C/C++) are generally faster than

interpreted (Per l / Java)

● How long development can take.
✵ Per l promotes rapid prototyping, C++ does not

● How portable the code needs to be.
✵ Visual basic is only available on Windows
✵ Most common languages (C/C++/Java/Per l) exist on all

platforms

● How often the code will change.
✵ Is speed more important than flexibility?

22

To determine data flow consider :

● Where each application gets its data.
✵ Automatically generated / human entry

● Where the output needs to go.
✵ Database / user / display / another program

● The desired input and output formats.
✵ Output of one program needs to match input of next

● The oppor tunity to parallelize data flow.
✵ Large scale parallelism is easy and often very effective

To choose an application inter face consider :

● Command line inter faces.
✵ Not very intuitive
✵ Powerful
✵ Can be batched

● GUI’s.
✵ Intuitive to users
✵ Slow (par ticular ly for exper ienced users)
✵ Often machine specific

● web based inter faces.
✵ Good way to reach distr ibuted user group
✵ Platform independent (theoretically, but not always)
✵ Even slower

23

To select an application architecture consider :

● The type of client and server machines available.
✵ A large compute engine would favor a thin client for a

small user base, but could become overburdened
✵ I f everyone has a Pentium-700, then a thick client or a

stand-alone application on the desktop might be best

● The amount of data that needs to be moved.
✵ Data intensive applications should be run on the same

machine the data is stored on

● The location of your users.
✵ Distr ibuted user-base implies a web-based architecture

To determine component granular ity
consider :

● The smallest self-contained, useful functionality.
✵ Should probably be represented as individual modules

● The cost of moving data between components.
✵ I f this is high combining modules may be warranted

● What functionality is likely to be replaced together.
✵ Outdated code and bottlenecks will need to be replaced

over time, so should form their own modules

● Potential gains from parallelizing the code.
✵ Tasks need to be of a cer tain size before it makes sense

to parallelize code

24

To decide on buy vs. freeware vs. build
consider :

● I f buying locks you in to a specific product.
✵ I f your architecture is flexible enough it shouldn’ t.
✵ Is the cost (including support) reasonable ?

● I f the free product is worth it.
✵ Can you per form your own maintenance?
✵ Does it fit into the rest of your architecture?
✵ What assumptions are built in to it?

● I f you have the resources to build it.
✵ Can you meet the required deadlines?
✵ Can you per form all of your own maintenance?

Discussion:

What environment are you in?

25

My recommendations:

● Oracle
✵ OR technology may be useful in the long term

● Thin clients
✵ Generally more scalable

● Java - for inter faces
● C++ - for time cr itical / heavy processing programs
● Perl - for everything else

● Use free stuff whenever you can
✵ Avoid high cost programs, but don’ t re-invent the wheel
✵ High-quality code is available for some applications

There is no r ight answer .

You need to look at the problem you are trying to
solve within the context of your current environment

and where you want to go.

My recommendations:

● Web-based approaches are the current rage
✵ Significant server hardware requirements
✵ “ Wr ite once, run anywhere” programs don’ t
✵ Impossible to address all needs this way

26

Hands-On Exercise:

Using the Web

There are many search engines on the web:

● Yahoo
✵ http://www.yahoo.com/

● Alta-Vista
✵ http://www.altavista.com/

● Excite
✵ http://www.excite.com/

Effectively using search engines is cr itical to
getting the most from the web.

27

There is a lot of documentation available:

Use your favor ite search engine to
● Find information about Per l 5.

✵ What does Per l stand for?
✵ What is the comment character in per l?
✵ http://www.per lreference.com/
✵ http://www-tecc.stanford.edu/cgi-bin/per l-man

● Find the GNU Emacs users manual.
✵ How do you create a new file in emacs?
✵ http://www.gnu.org/manual/emacs-

20.3/html_mono/emacs.html

There are a lot of useful tools available:

● RasMol
✵ Protein structure viewer

● Blast
✵ Local client and local database creation tools
✵ Output parsers

● Special-purpose modules
✵ bioper l - collection of Per l modules
✵ biojava - collection of Java modules
✵ biopython - collection of Python modules

http://biocenter .helsinki.fi/bi/rnd/biocomp/

28

Many institutions distr ibute their data over
the web:

● Find the home pages for
✵ dbEST
✵ PDB
✵ SWISS-PROT

● Find the NCBI blast home page
✵ http://www.ncbi.nlm.nih.gov/BLAST/

Discussion:

What sources do you use?

29

Answer ing some questions is still not easy.

● Given the sequence contained in file seq-1.dat find

✵ The function of the resulting protein
✵ The protein’s secondary structure
✵ The protein’s structural classification
✵ I f the resulting protien was engineered or came from an

organism(s)

Consistency is a problem

● Notice what happens when blasting that sequence
against Swiss-Prot or PDB

✵ Against PDB, you get 1DUZ which was engineered
✵ Against SP, you get P01892 which points to several,

including 1HLA which is from Human (notice that
1DUZ is not even listed)

While similar , there are differences between
these chains. Can you tell, where the sequence

came from or iginally?

30

How do web-inter faces work?

● Star t page is usually wr itten in html.
✵ May be augmented with Java or Java-scr ipt

● Submitting query transfers data to the server.
✵ There may be hidden data on a page

● Sever processes data.
✵ CGI scr ipts are the most common way of doing this
✵ Servlets are becoming more common
✵ May connect to database, other programs, etc.

● Program returns new html page.
✵ Usually, these pages are dynamically generated from a

template based on query results

What is CGI?

● The common gateway inter face.
✵ Protocol for transferr ing data over the internet
✵ Used pr imar ily in web pages and http connections

● Data is passed as a str ing.
✵ Parameter name-value pairs are passed
✵ Limit on size of total str ing
✵ Most languages have a parser module / class to conver t

to an internal representation

● Perl is the most common programming language
for CGI scr ipts.

✵ Usually small enough that speed is not cr itical

31

Discussion:

Are web inter faces scalable?

Aspects to consider :

● Web server is doing most of the query processing.

● Asking a new question requires defining a new
inter face and support scr ipts.

● Inter face designed for human interaction.
✵ With some difficulty, programs can be made to call CGI

scr ipts directly.

32

Hands-On Exercise:

Beginning Per l

Lets look at a simple Per l program.

● Copy blast-1.pl to your directory

● Bring up Emacs

● Open the file
✵ This program calls blast passing in a single sequence
✵ The results are just pr inted to the screen

● Run the program from the command line

33

Discussion:

How would you make this program
more useful?

Some suggestions:

● Read sequence from file.

● Be able to handle multiple sequences.

● Select database on command line.

● Handle both protein and DNA databases.

● Parse the output into a different format.

● GUI inter face ???

34

Exchanging Data

XML has become the data interchange format
of choice.

● Very simple format (similar to html).
<tag> data </tag>
<seq> AACCTGGGATTAAGG... </seq>

● Tags can be nested to form complex objects.
<gene>

<name>…</name>
<seq>…</seq>

</gene>
● An XML file has exactly one top-level object.

35

Why is XML useful?

● XML makes passing data easy.
✵ Between programs
✵ Between languages
✵ Between computers

● Format of objects can be descr ibed in “ DTD” s.
✵ Allows identification of poor ly formatted data

● XML parsers are freely available from the web.
✵ Validating parsers compare data to a given schema
✵ Non-validating parsers just look for cor rect syntax

Discussion:

What are some problems with XML?

36

Some suggestions:

● Very verbose
✵ Hard to enter by hand
✵ Takes up a lot more space
✵ No binary representation

● No semantics
✵ Tags no meaning, so it is easy to get confused
✵ For example, I used the <seq> tag to refer to a DNA

sequence. What if your program used it to refer to a
protein sequence?

● www.bioxml.org (GAME project)
✵ Developing a collection of dtds (schema) for bio data
✵ As close to a standard as we have at this point

Hands-On Exercise:

Extending blast-1.pl

37

The results returned by blast-1.pl are not
easily interpreted.

Modify blast-1.pl so that the blast results are
pr inted in an XML format.

Novice
Programmers

Star t with
blast-1b.pl

Exper ienced
Programmers

Star t with
blast-1.pl

Discussion:

How many of you choose the same
tags?

38

Conclusions

Other issues to consider :

● Secur ity
✵ Physical
✵ Cryptography

● Social aspects
✵ Managers
✵ Support

● Legal issues

● Ethical issues

✵ Password
✵ Firewalls

✵ Funding
✵ People

39

What you should remember

● Building a scalable infrastructure is hard.

● Every decision you make has implications on
scalability.

● Be as flexible as possible in your design.

● Use a relational database.

● Use existing software where appropriate.

What I tr ied to do:

● Give you a basic idea of how design decisions at all
levels impact the scalability of the entire system.

● Expose you to the basic tools that you will need if
you pursue bioinformatics fur ther .

Convince you that building a scalable
bioinformatics infrastructure is not easy.

40

For more information:

● Web
✵ http://evol.nott.ac.uk/cmelun/links.html
✵ http://www.hgmp.mrc.ac.uk/CCP11/
✵ http://mer lin.mbcr .bcm.tmc.edu:8001/bcd/Curr ic/welcome.html

UC Berkley Extension Classes

Bioinformatics Infrastructure Design
Programming for Bioinformatics

Tom Slezak

Homework due 5:00 Fr iday.

A wr itten report (100%) that provides:
* A definition of a scalable infrastructure
 * use at least two examples to highlight systems that are not scalable in different ways
* A detailed discussion of a bioinformatics problem where scalable infrastructures are
needed. Make sure to address:
 * why this is a problem worth solving
 * what makes this a challenging problem
 * why scalability is a major hurdle to addressing this problem
 * the major components of this problem
 * limitations of cur rent systems
 * How you would address this problem and why, including:
 * what tools you would use (and why)
 * how you would combine/integrate the problem’s different components
 * why this approach is scalable
I f you are familiar with an example that was not presented in class, please feel free to use it.

● E-mail to cr itchlow@llnl.gov
✵ Just plain text, no word attachments please

41

Discussion:

Questions / Comments?

This work was performed under the auspices of the U.S.
Department of Energy by University of California Lawrence
Livermore National Laboratory under contract No. W-7405-

ENG-48.

